

Delta Risk Management Strategy

Public Presentation
June 26, 2007
Rio Vista, California

Sutter Bypass 97 & Taylor 86

Jones Tract, June 2004

From: Prof. Ray Seed

VOC/GETO

Sacramento Pocket Area

DRMS - Project Scope

AB-1200 set the General Framework:

- "Risk-Based Evaluation"
- Subsidence, Earthquakes, Floods, Climate
 Change, "Normal Conditions", & Combination
- Impacts On 50-, 100-, 200-year Projections
- Develop and Comparatively Rate Each Option
- Prevent Disruption of Water Supplies
- Improve Water Quality

Project Scope (cont.)

- Protect & Enhance Ecosystem
- Assist In Preserving Delta Lands
- Protect The Infrastructure
- Preserve, Protect, Improve Delta Levees
- "Public Safety"

DRMS Deliverable

Phase 1 - Estimate the Risk to the Delta-Suisun Marsh and Affected Regions

Phase 2 - Develop, Rate and Prioritize
List of Risk-Reducing/Management
Strategies

Project Activities- Phase 2

Expected Annual Frequency of Failures due to Flood Events

Historic Failures by Floods in the Last 100 years

Expected Annual Frequency of Failures due to Seismic Events

Expected Annual Frequency of Failures due to Combined Seismic & Flood Events

Probability of Simultaneous Island Failure Due to Seismic Events

Repair of Damaged Levees

Analysis Cases (#Flooded Islands, # damaged islands)	Repair Costs (\$B)	Repair Duration Days (Years)
1 (1 Flooded, 2 Damaged)	1.05	516 (1.4)
2 (3 Flooded, 0 Damaged)	1.80	478 (1.3)
3 (3 Flooded, 4 Damaged)	2.12	596(1.6)
4 (10 Flooded, 0 Damaged)	4.03	1236(3.4)
5 (20 Flooded, 6 Damaged)	6.15	1745 (4.8)
6 (30 Flooded, 6 Damaged)	8.47	2328 (6.4)

Expected Ecological Impacts

Expected Economic & Financial Costs (\$B)

Expected Economic Impacts (\$B)

Expected Economic Impacts (Indirect)

Summary of Key Findings

- The expected mean number of island failures is about 209 in 100 years
- The largest number of simultaneous island failures during flood events is estimated to be about 12 to 15
- There is about 28% chance of 30 or more islands failing simultaneously during a major earthquake in the next 25 years

Summary of Key Findings

- There is a 75% chance of a moderate (M6 to M6-1/2) earthquake in the next 25 years
- There is a 28% chance of a large (M>7) earthquake in the next 25 years
- Contributing Sources: Hayward, Midland, San Andreas faults

Summary of Key Findings

- Future flood risk will likely increase the probability of island flooding by 10% in 2050 and 24% in 2100
- Future seismic risk will likely increase the probability of island flooding by 12% in 2050 and by 27% in 2100
- Sea Level rise of 3 feet would push the salt line about 3 miles to the east

Thank You